Diffusion Filters and Wavelets: What can they learn from each other?

Martin Godec
David Herrgesell

Mathematische Grundlagen in Vision & Grafik
Based on [1] by Weickert, Steidl, Mrázek, Welk, and Brox
two Methods, same Purpose

Noisy Image

Shift invariant soft wavelet shrinkage

Nonlinear diffusion filtering with total variation diffusivity

Can we join the benefits of this two methods?
Content

• Introduction
• Basic Methods
• Relations for Space-Discrete Diffusion
• Relations for Fully Discrete Diffusion
• Wavelets with Higher Vanishing Moments
• Summary
Introduction

- Removing noise without sacrificing important structures
- Nonlinear strategies
 - Wavelet shrinkage
 - Nonlinear diffusion filtering based on discrete considerations
Content

• Introduction

• Basic Methods
 – Wavelet Shrinkage
 – Nonlinear Diffusion Filtering

• Relations for Space-Discrete Diffusion

• Relations for Fully Discrete Diffusion

• Wavelets with Higher Vanishing Moments

• Summary
Wavelet Shrinkage

Three main steps

- **Analysis**
 Transform noisy data to wavelet coefficients

- **Shrinkage**
 Apply shrinkage function with a threshold parameter

- **Synthesis**
 Reconstruct denoised data from shrunken wavelet coefficients
Wavelet Shrinkage

Analysis

• Lowpass filtering for averaging
• Highpass filtering for details
• Downsampling due to Nyquist criteria

Often implemented as a filter bank

\[
y_{\text{low}}[n] = \sum_{k=-\infty}^{\infty} x[k]g[2n - k]
\]

\[
y_{\text{high}}[n] = \sum_{k=-\infty}^{\infty} x[k]h[2n - k]
\]

\[
y_{\text{low}} = (x * g) \downarrow 2
\]

\[
y_{\text{high}} = (x * h) \downarrow 2
\]
Wavelet Shrinkage

Analysis

\[f = \sum_{i \in \mathbb{Z}} \langle f, \varphi_i^n \rangle \varphi_i^n + \sum_{j = -\infty}^{n} \sum_{i \in \mathbb{Z}} \langle f, \psi_i^j \rangle \psi_i^j \]

Haar Wavelets

\[\varphi(x) = 1_{[0, \frac{1}{2})} - 1_{[\frac{1}{2}, 1)} \]

\[\psi(x) = 1_{[0, 1)} \]
Wavelet Shrinkage

Shrinkage by Soft-Thresholding [2]

\[S_\theta(s) := \begin{cases}
 s - \theta \text{sgn } s & \text{if } |s| > \theta \\
 0 & \text{if } |s| \leq \theta
\end{cases} \]

Synthesis

\[u := \sum_{i \in \mathbb{Z}} \langle f, \phi_i^n \rangle \phi_i^n + \sum_{j=-\infty}^{\infty} \sum_{i \in \mathbb{Z}} S_\theta\left(\langle f, \psi_i^j \rangle \right) \psi_i^j \]
Nonlinear Diffusion Filtering

Start in 1D

Idea

Obtain a family $u(x,t)$ of filtered versions of a signal $f(x)$ by computing

\[u_t = \left(g(|u_x|) \right) u_x \]

Initial condition $u(x,0) = f(x)$

x Space

t Time
Nonlinear Diffusion Filtering

\[g(|u_x|) \] Diffusivity function

Now:

\[g(|s|) = \frac{1}{|s|} \]

Total Variation (TV) diffusivity

Problem if \(|s|\) close to zero (unboundend):

\[u_t = \left(\frac{1}{\sqrt{\epsilon^2 + u_x^2}} u_x \right)_x \]

Regularisation
Nonlinear Diffusion Filtering

Discretisation Scheme

By assuming unit (1) distance between neighbouring pixels we get

\[u_x = \frac{u_{i+1} - u_i}{1 - 0} = u_{i+1} - u_i \]

Lower index denotes spatial spread

Time step size \(\tau \) leads to

\[u_t = \frac{u_i^{k+1} - u_i^k}{\tau} \]

upper index \(k \) denotes approximate solution at time \(k \tau \)
Nonlinear Diffusion Filtering

Therefore \[u_t = (g(|u_x|) u_x)_x \]

becomes

\[\frac{u_{i}^{k+1} - u_{i}^{k}}{\tau} = g(|u_{i+1}^{k} - u_{i}^{k}|) (u_{i+1}^{k} - u_{i}^{k}) - g(|u_{i}^{k} - u_{i-1}^{k}|) (u_{i}^{k} - u_{i-1}^{k}) \]

resolving by the unknown \(u_{i}^{k+1} \) we achieve

\[u_{i}^{k+1} = u_{i}^{k} - \tau g(|u_{i}^{k} - u_{i+1}^{k}|) (u_{i}^{k} - u_{i+1}^{k}) + \tau g(|u_{i-1}^{k} - u_{i}^{k}|) (u_{i-1}^{k} - u_{i}^{k}) \]
Content

• Introduction
• Basic Methods
• Relations for Space-Discrete Diffusion
 - Equivalence of two pixel signals
 - Wavelet inspired scheme for TV Diffusion
 - Generalisations to Images
• Relations for Fully Discrete Diffusion
• Wavelets with Higher Vanishing Moments
• Summary
Equivalence of two pixel signals

Study connections between „soft Haar“ Wavelet Shrinkage and nonlinear diffusion with TV diffusivity

Two pixel signal \((f_0, f_1)\) with respect to scaling function \(\varphi = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) and wavelet \(\psi = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)\) lead to

\[
\langle f, \varphi \rangle = c = \frac{f_0 + f_1}{\sqrt{2}} \quad \frac{c}{\sqrt{2}}
Equivalence of two pixel signals

Soft thresholding of wavelet coefficient yields

$$S_\theta(d) = \begin{cases}
 d - \theta \, \text{sgn} \, d & \text{if} \quad |d| > \theta \\
 0 & \text{if} \quad |d| \leq \theta
\end{cases}$$

leading to the filtered signal \((u_0, u_1)\) Shrinkage step

\[u_0(\theta) = \begin{cases}
 f_0 + \frac{\theta}{\sqrt{2}} \, \text{sgn} \, (f_1 - f_0) & \text{if} \quad \theta < |f_1 - f_0| / \sqrt{2}, \\
 (f_0 + f_1) / 2 & \text{else,}
\end{cases} \]

\[u_1(\theta) = \begin{cases}
 f_1 - \frac{\theta}{\sqrt{2}} \, \text{sgn} \, (f_1 - f_0) & \text{if} \quad \theta < |f_1 - f_0| / \sqrt{2}, \\
 (f_0 + f_1) / 2 & \text{else.}
\end{cases} \]

.... Synthesis step
Equivalence of two pixel signals

Now: space discrete TV Diffusion of \((f_0, f_1)\) with grid size 1

Remember the discretisation scheme

\[
\frac{u_i^{k+1} - u_i^k}{\tau} = g(|u_{i+1}^k - u_i^k|) (u_{i+1}^k - u_i^k) - g(|u_i^k - u_{i-1}^k|) (u_i^k - u_{i-1}^k)
\]

This leads to dynamical system of DE

\[
\dot{u}_0 = \frac{u_1 - u_0}{|u_1 - u_0|}, \quad \dot{u}_1 = -\frac{u_1 - u_0}{|u_1 - u_0|},
\]

with initial conditions

\[
u_0(0) = f_0 \quad \text{and} \quad u_1(0) = f_1\]
Equivalence of two pixel signals

Setting \(w(t) := u_1(t) - u_0(t) \) and \(\eta := f_1 - f_0 \)
leads to initial value problem

\[
\dot{w} = -2 \frac{w}{|w|},
\]

\(w(0) = \eta. \)

still in trouble if \(w=0 \)

get rid of by setting

\[
\dot{w} = -2 \text{sgn} \; w,
\]

\(w(0) = \eta \)

and let \(\text{sgn}(w) \) be any value between -1 and 1 if \(w=0 \)
Equivalence of two pixel signals

Solving this DE exactly gives us

\[u_0(t) = \begin{cases} f_0 + t \, \text{sgn}(f_1 - f_0) & \text{if } t < |f_1 - f_0|/2, \\ (f_0 + f_1)/2 & \text{else}, \end{cases} \]

Looks very similar to what we have seen in case of wavelets

\[u_1(t) = \begin{cases} f_1 - t \, \text{sgn}(f_1 - f_0) & \text{if } t < |f_1 - f_0|/2, \\ (f_0 + f_1)/2 & \text{else}. \end{cases} \]

The **BIG** thing:

Equivalence of both approaches if threshold

\[\theta = \sqrt{2t}. \]
Wavelet inspired Scheme for TV Diffusion

Now can we use 2 Pixel equivalence to spread our thoughts up to N Pixels?

Haar Wavelets: 2 Pixel pairs (independent)

Problem: shrinkage is not shift invariant

Coifman, Donoho 1995 „Cycle Spinning“
Wavelet inspired Scheme for TV Diffusion

use this idea to get a TV Diffusion numerical scheme for N Pixel by using solution of 2 Pixel model as a building block

1) perform TV Diffusion with time step size 2τ on all pixel pairs (u_{2j}, u_{2j+1})

2) perform TV Diffusion with time step size 2τ on all pixel pairs (u_{2j-1}, u_{2j})

3) average both results

First two steps equivalent to translation invariant Soft Haar with threshold $\Phi = 2\sqrt{2\tau}$
Wavelet inspired Scheme for TV Diffusion

Use 2 Pixel analysis to easily derive the following numerical scheme

\[u_i^{k+1} = u_i^k + \frac{\tau}{h} \operatorname{sgn} (u_{i+1}^k - u_i^k) \min \left(1, \frac{h}{4\tau} |u_{i+1}^k - u_i^k| \right) \]
\[- \frac{\tau}{h} \operatorname{sgn} (u_i^k - u_{i-1}^k) \min \left(1, \frac{h}{4\tau} |u_i^k - u_{i-1}^k| \right) \]

Attributes

- stable
- consistent to "pure" TV diffusion filtering

if

\[t \leq \frac{h}{4} \min(|u_{i+1}^k - u_i^k|, |u_i^k - u_{i-1}^k|) \]
Wavelet inspired Scheme for TV Diffusion

FIGURE 2. (a) **Top left**: Original signal without noise. (b) **Top right**: With additive Gaussian noise, SNR=8 dB. (c) **Bottom left**: Result with two-pixel scheme. SNR = 24.5 dB. (d) **Bottom right**: Result with classical regularised scheme. SNR = 24.6 dB. From [20].
Generalisations to Images

1D -> 2D

Analogy between one and two dimensional cases

-> determine equivalency between TV diffusion and Soft Haar wavelet shrinkage concerning 2*2 pixel blocks

-> use this 4 pixel solution as building blocks for a numerical scheme for 2D TV diffusion

Stable, conditionally consistent and no additional regularisation needed
Generalisations to Images

FIGURE 3. (a) Left: Original image, 93×93 pixels. (b) Middle: Standard explicit scheme for regularised TV diffusion ($\varepsilon = 0.01$, $\tau = 0.0025$, 10000 iterations). (c) Right: Same with four-pixel scheme without regularisation ($\tau = 0.1$, 250 iterations). Note that 40 times larger time steps are used. From [22].
Content

• Introduction
• Basic Methods
• Relations for Space-Discrete Diffusion
• Relations for Fully Discrete Diffusion
 – Diffusion Inspired Shrinkage Functions
 – Wavelet Shrinkage with Improved Rotation Invariance
• Wavelets with Higher Vanishing Moments
• Summary
Diffusion Inspired Shrinkage Functions

So Far connections between soft Haar wavelet shrinkage
Now connections between arbitrary diffusivities and Haar wavelet shrinkage with general shrinkage functions

Therefore: fully discretisation (space and time)

Remember once more :) the discretisation scheme

\[
\frac{u_i^{k+1} - u_i^k}{\tau} = g(|u_{i+1}^k - u_i^k|)(u_{i+1}^k - u_i^k) - g(|u_i^k - u_{i-1}^k|)(u_i^k - u_{i-1}^k)
\]
Diffusion Inspired Shrinkage Functions

Starting with \(u^0_i = f_i \) we obtain

\[
\begin{align*}
 u^1_i &= u_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4} + (f_i - f_{i+1})\left(\frac{1}{4} - tg(|f_i - f_{i+1}|)\right) \\
 &\quad - (f_{i-1} - f_i)\left(\frac{1}{4} - tg(|f_{i-1} - f_i|)\right)
\end{align*}
\]

as first iteration step

On the other hand: translation invariant soft Haar wavelet shrinkage

\[
 u_i = \frac{f_{i-1} + 2f_i + f_{i+1}}{4} + \frac{1}{2\sqrt{2}} S_\theta\left(\frac{f_i - f_{i+1}}{\sqrt{2}}\right) - \frac{1}{2\sqrt{2}} S_\theta\left(\frac{f_{i-1} - f_i}{\sqrt{2}}\right)
\]

What do we see??
Diffusion Inspired Shrinkage Functions

Comparing shows that both methods are equivalent if

$$\frac{\sqrt{2}}{4} S_\theta \left(\frac{s}{\sqrt{2}} \right) = s \left(\frac{1}{4} - \tau g(|s|) \right)$$

explicit correspondences by

$$S_\theta(x) = x(1 - 4tg(\sqrt{2}|x|))$$

$$g(|x|) = \frac{1}{4t} - \frac{\sqrt{2}}{4tx} S_\theta \left(\frac{x}{\sqrt{2}} \right)$$
Diffusion Inspired Shrinkage Functions

Top: Four popular shrinkage functions: soft, garrote, firm, and hard shrinkage
Bottom: Corresponding diffusivities. [3].
Diffusion Inspired Shrinkage Functions

Top: Four popular diffusivities: linear, Charbonnier, Perona-Malik, and Weickert diffusivity.
Bottom: Corresponding shrinkage functions.
Wavelet Shrinkage with improved Rotation Invariance

• From 1-D signals to 2-D grayscale images
• 2-D Haar wavelet transform
 – Lowpass filter \(L (1/\sqrt{2}, 1/\sqrt{2}) \)
 – Highpass filter \(H (1/\sqrt{2}, -1/\sqrt{2}) \)

\[
\begin{align*}
v_{l+1} & = L(x) * L(y) * v^l, \\
w_{y}^{l+1} & = L(x) * H(y) * v^l, \\
w_{x}^{l+1} & = H(x) * L(y) * v^l, \\
w_{xy}^{l+1} & = H(x) * H(y) * v^l
\end{align*}
\]

– Shrink all coefficients \(\omega_x, \omega_y, \omega_{xy} \) separately
Wavelet Shrinkage with improved Rotation Invariance
Wavelet Shrinkage with improved Rotation Invariance

- Isotropic variant of scalar-valued diffusivity

\[u_t = \text{div}(g(|\nabla u|) \nabla u) \]

- Derive coupled shrinkage rules

\[
S(w_x) = w_x \left(1 - 4 \tau g \left(\sqrt{w_x^2 + w_y^2 + 2w_{xy}^2} \right) \right)
\]

\[
S(w_y) = w_y \left(1 - 4 \tau g \left(\sqrt{w_x^2 + w_y^2 + 2w_{xy}^2} \right) \right)
\]

\[
S(w_{xy}) = w_{xy} \left(1 - 4 \tau g \left(\sqrt{w_x^2 + w_y^2 + 2w_{xy}^2} \right) \right)
\]
Wavelet Shrinkage with improved Rotation Invariance
Shrinkage of Colour Images

- Inspired by diffusion

\[\partial_t u_i = \text{div} \left(g \left(\left(\sum_{j=1}^{3} |\nabla u_j|^2 \right)^{1/2} \right) \nabla u_i \right) \]

- Coupling of channels
- Synchronised channels
Content

• Introduction
• Basic Methods
• Relations for Space-Discrete Diffusion
• Relations for Fully Discrete Diffusion
• Wavelets with Higher Vanishing Moments
• Summary
Wavelets with Higher Vanishing Moments

- Wavelets with $m \geq 1$ vanishing moments
- m^{th} order derivatives

\[
S_{\theta}\left(\frac{\gamma_m h^m}{m!} s \right) = s\left(\frac{\gamma_m h^m}{m!} + 2\tau \frac{(-1)^m m!}{\gamma_m h^m} g(|s|)\right)
\]

for $m = 2$

\[
S_{\theta}\left(\frac{\sqrt{3}}{2\sqrt{2}} s \right) = s\left(\frac{\sqrt{3}}{2\sqrt{2}} + 2\tau \frac{2\sqrt{2}}{\sqrt{3}} g(|s|)\right)
\]
Content

• Introduction
• Basic Methods
• Relations for Space-Discrete Diffusion
• Relations for Fully Discrete Diffusion
• Wavelets with Higher Vanishing Moments
• Summary
Summary

• Showed connections between wavelet shrinkage and nonlinear diffusion filtering for discrete
• Wavelet-inspired scheme for TV diffusion
• Relation between shrinkage functions and diffusivity
• Shrinkage-functions inspired by diffusion
• Coupling strategies for color images
• Build hybrid schemes
Relations to „Mathematical Fundamentals of Vision and Grafic“

What have we seen in the course?

-> Diffusion Equation
-> Diffusion to reduce noise but preserve edges - 3 approaches to make the diffusion locally adaptive to structure of image
 - Curve evolution approach
 - Energy minimizing approach
 - Non linear PDE approach
 e.g. Perona – Malik equation
 or Total Variation (TV)
References

