Segmentation of Diffusion Tensor Images

Markus Demuth
markus.demuth@tugraz.at

Kerstin Pötsch
kerstin.poetsch@tugraz.at

1 Institute for Theoretical Computer Science
Graz University of Technology

2 Vision-based Measurement Group (VMG) at EMT
Graz University of Technology

June 2, 2008
Brain Analysis
- Structures (corpus callosum, arcuate fasciculus, corona radiata) of the white matter
- Fiber bundles

Diagnose and locate diseases
- Strokes
- Tumors
- Alzheimer’s disease
- Schizophrenia
Examples

Figure: Nerve tracts

Figure: Corpus callosum
1 Motivation
2 Introduction
3 Segmentation of diffusion tensor images
4 Region-based active contour for DTI segmentation
 • Segmentation Models
 • Algorithm
5 Results
Specific magnetic resonance imaging modality
Non-invasive Method
Tries to estimate the diffusion of water molecules
Isotropic and anisotropic diffusion
Acquisition and estimation

- Acquisition with an MRI scanner
- At least 6 diffusion-weighted (and one unweighted image) images in non-collinear directions
- Diffusion gradient changed with magnetic field variations in the MRI magnet
- For each voxel, the diffusion tensor can be estimated with linear or variational estimation
Diffusion Tensor

\[
D = \begin{pmatrix}
D_{xx} & D_{xy} & D_{xz} \\
D_{yx} & D_{yy} & D_{yz} \\
D_{zx} & D_{zy} & D_{zz}
\end{pmatrix}
\]

- 3x3 symmetric matrix
- Positive-definite matrix
- Fiber direction: tensor’s main eigenvector
Overview

- K-means [7]
- Boundary-based active contours [8, 4]
- Region-based active contour [9]
K-means algorithm

1. Choose number of clusters and their centers
2. Assign a cluster to each data point due to a distance measure
3. Recompute cluster centers
4. Stop if no data point is assigned to a different cluster as the step before
K-means for DTI segmentation

Clustering measure between a voxel j and a cluster k

$$E_{jk} = \|x_j - x_k\|_{Wk} + \gamma \|D_j - D_k\|_F$$

with the Mahalanobis voxel distance

$$\|x\|_{Wk} = \sqrt{x^T W^{-1} x}$$

and Frobenius distance between two diffusion tensors

$$\|D_1 - D_2\|_F = \sqrt{\sum_{ij} (D_{1,ij} - D_{2,ij})^2}$$
Boundary-based active contours for DTI segmentation (1/2)

Geometric active contours:

\[
\frac{\partial \phi}{\partial t} = -F \cdot \nabla \phi
\]

with zero level of function \(\phi \) is the evolving curve \(C \) and

\[
F = F_{\text{data}} + \beta F_{\text{curv}}
\]

is the speed of the evolving curve.
Geodesic active contours:

\[
\frac{\partial \phi}{\partial t} = g(\cdot) |\nabla \phi| \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} + \nabla g(\cdot) \cdot \nabla \phi
\]

where \(g(\cdot) \) is a stopping function.

Gradient magnitude:

\[
\text{gradMag}(D_\sigma) ::= \sqrt{\sum_{ij} |\nabla D_{\sigma,ij}|^2}
\]
Region-based active contour based DTI segmentation

- use Region-based active contour models
- incorporate an information theoretic tensor dissimilarity measure based on Kullback-Leibler divergence
- are robust to noise and insensitive to initialization

There are 2 approaches which are based on

1. Geometric active regions developed by Lenglet et.al. [2] and Rousson et.al [5]
Mumford-Shah Segmentation Model

Minimization of following variational principle based on the Mumford-Shah functional:

\[E(T, C) = \int_{\Omega} d^2(T(x), T_0(x)) dx + \alpha \int_{\Omega/C} p(T)(x) dx + \beta |C| \]

where
- \(C \) \ldots boundary of the unknown segmentation
- \(\Omega \in \mathbb{R}^2 \) \ldots image domain
- \(T_0 \) \ldots given noisy DTI
- \(T \) \ldots piecewise smooth approximation of \(T_0 \)
- \(|C| \) \ldots arc length of curve \(C \)
- \(\alpha, \beta \) \ldots control parameter
- \(d(., .) \) \ldots Diffusion tensor distance measure
Modification of the active contour model without edges by Chan and Vese [1]

Efficient segmentation of tensor fields with two constant regions

Functional:

\[E(C, T_1, T_2) = \int_R d^2(T(x), T_1)dx + \int_{R^C} d^2(T(x), T_2)dx + \beta |C| \]

- \(R \) ... region enclosed by \(C \)
- \(R^C \) ... region outside \(C \)
- \(T_1, T_2 \) ... mean values of DTI in region \(R, R^C \)
Information theoretic diffusion tensor distance

- Kullback-Leibler divergence for two densities p and q is defined by
 \[
 KL(p\|q) = \int p(x) \log \frac{p(x)}{q(x)} \, dx
 \]

- J-divergence (symmetrized Kullback-Leibler) is defined by
 \[
 J(p, q) = \frac{1}{2} [KL(p\|q) + KL(q\|p)]
 \]

- Information theoretic diffusion tensor distance is defined by
 \[
 d(T_1, T_2) = \sqrt{J(p(r|t, T_1), p(r|t, T_2))}
 \]

- In case of Gaussian distributions it is given by
 \[
 d(T_1, T_2) = \frac{1}{2} \sqrt{\text{tr}(T_1^{-1} T_2 + T_2^{-1} T_1) - 2n}
 \]
 where n is size of T_1 and T_2.
Algorithm 1 Two Stage Piecewise Constant Segmentation of DTIs [6]

1: Set initial curve C_0 and compute its signed distance function ϕ_0.
2: Compute T1 and T2 according to Theorem 1
3: Update signed distance function ϕ.
4: Reinitialize ϕ using the updated zero level set.
5: Stop if the solution is achieved, else go to step 2.
Theorem 1: The mean value of a tensor field defined as

$$\bar{M}(T, R) = \min_{M \in SPD(n)} \int_{\mathbb{R}} d^2 [M, T(x)] \, dx$$

is given by

$$\bar{M} = \sqrt{B^{-1}} \left[\sqrt{\sqrt{B}A\sqrt{B}} \right] \sqrt{B^{-1}}$$

where $A = \int_{\mathbb{R}} T(x) dx$ and $B = \int_{\mathbb{R}} T^{-1}(x) dx$ and $SPD(n)$ denotes the set of symmetric positive definite matrices of size n.
Matrix diagonalization (1/2)

Matrix diagonalization to compute

\[
\tilde{M} = \sqrt{B^{-1}} \left[\sqrt{\sqrt{BA\sqrt{B}}} \right] \sqrt{B^{-1}}
\]

- A real symmetric matrix A can be diagonalized

\[
A = ODO^T
\]

where O is an orthogonal matrix and D is a diagonal matrix: \(D = \{d_{11}, d_{22}, \ldots, d_{nn}\} \)

- Furthermore

\[
A^\alpha = OD^\alpha O^T
\]

where \(D^\alpha = \{d_{11}^\alpha, d_{22}^\alpha, \ldots, d_{nn}^\alpha\} \)
Algorithm 2 Computation of $\sqrt{\sqrt{BA}\sqrt{B}}$ [6]

1: Diagonalize $B = O_B D_B O_B^T$

2: Compute $\sqrt{B} = O_B \sqrt{D_B} O_B^T$

3: Compute $Q = \sqrt{BA} \sqrt{B} = O_B \sqrt{D_B} O_B^T A O_B \sqrt{D_B} O_B^T$

4: Diagonalize $Q = O_Q D_Q O_Q^T$

5: Compute $\sqrt{Q} = O_Q \sqrt{D_Q} O_Q^T$
Computation of ϕ

- Curve evaluation formulated as Level Set Framework
- Signed distance function ϕ of C

$$\frac{\partial \phi}{\partial t} = \left[\beta \nabla \frac{\nabla \phi}{|\nabla \phi|} - d^2(T, T_1) + d^2(T, T_2) \right] |\nabla \phi|$$
Segmentation using Piecewise Smooth Model

- Variation: Piecewise Smooth Model
- Smoothing stage: curve is fixed, smoothing inside and outside the curve

\[E_C(T) = \int_{\Omega} d^2(T(x), T_0(x))dx + \alpha \int_{\Omega/C} p(T)(x)dx \]

- Curve evolution stage: the inside and outside of the smoothed tensor field are fixed, the curve is moved

\[E_C(T) = \int_{R} d^2(T_R(x), T_0(x))dx + \int_{R^C} d^2(T_{R^C}(x), T_0(x))dx + \alpha \int_{R} p(T_R)(x)dx + \alpha \int_{R^C} p(T_{R^C})(x)dx + \beta |C| \]
Segmentation of a synthetic tensor field where two regions differs only in the orientations [6]:
Results

Segmentation of a synthetic noisy tensor field [6]:

(a)
(b)

(c)
(d)
Results

A slice of the DTI of a normal rat spinal cord viewed using ellipsoids [6]:
Segmentation of the slice of DTI [6]:

(a)
(b)
T. Chan and L. Vese.
Active contours without edges, 2001.

C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras.
Toward segmentation of 3d probability density fields by surface evolution: Application to diffusion mri.

D. Mumford and J. Shah.
Optimal approximation by piecewise smooth functions and associated variational problems.

Stanley Osher and James A Sethian.
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations.

Mikaël Rousson, Christophe Lenglet, and Rachid Deriche.
Level set and region based surface propagation for diffusion tensor mri segmentation.

Zhizhou Wang.
Diffusion tensor field restoration and segmentation.

Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging.

L. Zhukov, K. Museth, D. Breen, R. Whitaker, and A. Barr.

The Handbook of Mathematical Models in Computer Vision, chapter Segmentation of Diffusion Tensor.
Springer Verlag, 2005.
Thanks for your attention!

Any questions?