Welcome to Computer Graphics III

Capturing Reality
Prof. Dr.-Ing. Michael Goesele
Graphisch Interaktive Systeme (GRiS)
TU Darmstadt

Preliminaries
- Computer Graphics III (Graphische Datenverarbeitung III)
- This instance: Capturing Reality – Digitalisierungstechniken in der Graphischen Datenverarbeitung
- Instructor: Prof. Dr.-Ing. Michael Goesele
 michael.goesele@gris.informatik.tu-darmstadt.de
 Room 311, IGD Building

Preliminaries
- Time: Monday 14:25 – 16:05
- Exercises: Tuesday 12:35 – 14:15
- Location: Room 074 IGD Building
 Exceptions: 22.10. and 05.11. in Room 073
- Prerequisites: Computer Graphics I and II

Course Content
- basic tools and calibration techniques
- selection of state-of-the-art capturing techniques
- basic set of relevant mathematical modeling and optimization techniques

Digitizing Real World Objects
- by images
- no interaction
Digitizing Real World Objects

- by 3D geometry
- no color

Digitizing Real World Objects

- by geometry plus texture
- no relighting

Digitizing Real World Objects

- by geometry plus a single BRDF

Digitizing Real World Objects

- by geometry plus reflection properties

Reflection Properties

- BRDF (bi-directional reflectance distribution function)

\[f(\hat{\omega}_o, \hat{\omega}_i) \]

yields the fraction of reflected to incident radiance at one point for any pair of directions.

BRDF Measurement

- Gonioreflectometer

[Diagram of Gonioreflectometer with light source, sensor, and sample]
BRDF Measurement

- Gonioreflectometer

- Produces huge table of measurement data for pairs of directions
- Dense sampling required to model narrow highlights faithfully
- Works only for homogeneous materials and flat material samples

Image-Based BRDF Measurement

- [Marschner 1999]
- Capture lots of BRDF samples at one shot by a sensor array / camera
- Store the acquired samples in a large table
- Interpolate nearby values for reconstruction

Digitizing Real World Objects

- By geometry plus a single BRDF

Goal

- Measure reflection properties per texel
Overall Goal
- measure the reflection properties of each texel using a small number of images
- problems:
 - too few radiance samples per texel
 - no dense sampling of the BRDF
 - no reconstruction possible
- approach:
 - measure the reflection properties of the basic materials
 - describe the reflection properties of each texel as a weighted sum of the basis BRDFs

Acquisition Equipment
- 3D scanner
- digital camera
- point-light source
- dark room
- calibration targets (checkerboard, metal spheres)

Acquisition
- HDR images, calibrated camera/light source position

Acquired Data
- 18 input images (HDR)
- sparse sampling of spatially varying BRDF

3D-2D Registration
- calibrated gantry
- corresponding points
- silhouette-based method
Light Source Position

- Detect highlights of ring flash reflections
- Determine the position of the spheres

![Diagram of light source position](image)

Light Source Position

- Detect highlights of light source reflections
- Reconstruct light source position

![Diagram of light source position](image)

Lumitexels

- A lumitexel L collects all data available for a point on the surface:
 - 3D position \vec{x}
 - Normal \vec{n}
 - List of radiance samples R_{ij} for every image where \vec{x} is visible and lit:
 - Radiance value r_i
 - Light source direction \vec{l}_i
 - Viewing direction \vec{v}_i

 \[\{ \text{from geometry} \} \quad \{ \text{from images} \} \]

![Diagram of lumitexels](image)

Assembling Lumitexels

- For each point on the surface:
 - Find all images where the point is visible and lit
 - Take sample at corresponding pixel position

![Diagram of assembling lumitexels](image)

Overall Goal

- Measure the reflection properties of each texel using a small number of images

 - Problems:
 - Too few radiance samples per texel
 - No dense sampling of the BRDF
 - No reconstruction possible

 - Approach:
 - Measure the reflection properties of the basic materials
 - Describe the reflection properties of each texel as a weighted sum of the basis BRDFs

![Diagram of overall goal](image)
The Lafortune Model

\[f_r(\hat{\vec{u}}, \hat{\vec{v}}) = P_d + \sum_i (C_i u_i v_i) + (C_i' u_i' v_i') \]

- physically plausible
- diffuse component plus a number of lobes
- \(3(1+i^3)\) parameters (12 for a single lobe model)
- fit parameters to samples

Fitting BRDFs to Lumitexels

- define error measure between a BRDF and a lumitexel:
 \[E_K(L) = \frac{1}{|U|} \sum_{\vec{r} \in L} \Delta(f_r(\hat{\vec{u}}, \hat{\vec{v}})u_{i,z} r_i)^2 \]
- perform non-linear least square optimization for a set of lumitexels using Levenberg-Marquardt
- yields a single BRDF (i.e. its parameters) per set of lumitexels

Fitting Result

Clustering

- Goal: separate the different materials
 - similar to Lloyd iteration
- start with a single cluster containing all lumitexels
- split cluster along direction of largest variance
- stop after \(n\) clusters have been constructed

Split-Recluster-Fit Cycle

- split into two BRDFs
- distribute initial texels forming two new clusters
- refit new BRDFs
- repeat reclustering and fitting until clusters are stable

Clustering Results
Spatially Varying Materials

Spatially Varying BRDFs

- goal: assign a separate BRDF to each lumitexel
- problem: too few radiance samples for a reliable fit of the parameters

Overall Goal

- measure the reflection properties of each texel using a small number of images
- problems:
 - too few radiance samples per texel
 - no dense sampling of the BRDF
 - no reconstruction possible
- approach:
 - measure the reflection properties of the basic materials
 - describe the reflection properties of each texel as a weighted sum of the basis BRDFs

Projection

- too few radiance samples for a reliable fit
- represent the BRDF \(f_x \) of every lumitexel by a weighted sum of already determined BRDFs of the clusters \(f_1, f_2, \ldots, f_m \):
 \[
 f_x = t_1 f_1 + t_2 f_2 + \ldots + t_m f_m
 \]
- determine linear weights \(t_1, t_2, \ldots, t_m \)

Reconstruction Results

- compute the pseudo-inverse using SVD to get a least squares solution for

\[
\begin{bmatrix}
 f_1(u_1, v_1)u_{t_1} & f_1(u_2, v_2)u_{t_2} & \cdots & f_m(u_1, v_1)u_{t_m} \\
 f_1(u_2, v_2)u_{t_1} & f_1(u_2, v_2)u_{t_2} & \cdots & f_m(u_2, v_2)u_{t_m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1(u_m, v_m)u_{t_1} & f_1(u_m, v_m)u_{t_2} & \cdots & f_m(u_m, v_m)u_{t_m}
\end{bmatrix}
\begin{bmatrix}
 t_1 \\
 t_2 \\
 \vdots \\
 t_m
\end{bmatrix} = \begin{bmatrix}
 f_1(u_1, v_1) \\
 f_1(u_2, v_2) \\
 \vdots \\
 f_1(u_m, v_m)
\end{bmatrix}
\]

- avoid negative \(t_j \)
Prof. Dr.-Ing. Michael Goesele

Normals and Reflection

- for fixed (global) lighting and viewing direction reflectance changes with normal direction
Normal Maps

Real Geometry

Normal Map

Prof. Dr.-Ing. Michael Goesele

Measuring Normal Maps

[Rushmeier '97]

- shape from shading / photometric stereo
- assume diffuse surfaces: \(f(\omega', \Sigma', \omega') = \rho \)
- outgoing radiance:
 \[
 L_n = \rho L_i \cdot (\hat{\omega}_i | \hat{n})
 \]
- take three pictures with different light source positions

\[
\rho L_i \begin{pmatrix}
\omega_{1,1} & \omega_{1,2} & \omega_{1,3} \\
\omega_{2,1} & \omega_{2,2} & \omega_{2,3} \\
\omega_{3,1} & \omega_{3,2} & \omega_{3,3}
\end{pmatrix}
\begin{pmatrix}
n_1 \\
n_2 \\
n_3
\end{pmatrix}
=
\begin{pmatrix}
L_{n,1} \\
L_{n,2} \\
L_{n,3}
\end{pmatrix}
\]

Normal Maps for arbitrary BRDFs

- complex BRDFs require optimization
- start with
 \[
 f = t_1 f_1 + t_2 f_2 + \ldots + t_m f_m
 \]
 using the previously determined \(t_1, t_2, \ldots, t_m \)
 and the normal provided by the initial mesh,
- optimize for the normal direction and \(t_1, t_2, \ldots, t_m \)
 at the same time using Levenberg-Marquardt

Normal Maps Results

Without Normal Fitting

With Normal Fitting
Planned Sampling

- Where to place the camera and the light source in order to perform an efficient/more precise acquisition?

Sampling Goals

- Sample the surface evenly.
- Sample the reflection properties for each surface point from the most interesting directions.
- Increase the certainty in the estimated reflection parameters.
- Avoid complicated bookkeeping!

Applied to Real Objects

- View planning by uncertainty minimization.
- A Hessian matrix needs to be evaluated for each point on the surface.
- Real-World Constraints:
 - Visibility
 - Shadows
 - Restrictions on camera and light source placement
 - Camera and light source have to be a minimum distance apart (set objective function to zero).
 - Sampling at grazing angles is undesirable since it amplifies geometric errors (weight by the cosine).

Applied to Real Objects

- Plot of uncertainty during an acquisition
 - Top row: planned approach
 - Bottom row: human expert
 - Uncertainty decreasing black → red → blue

Summary

- Complete (large) acquisition pipeline for spatially varying BRDFs of objects
- Appearance model suitable for realistic rendering
- Pointers to important aspects
 - Will be covered in future lectures
Outlook

- next 2 lectures:
 - cameras
 - geometric calibration
 - photometric calibration
 - high-dynamic range imaging
 - homework assignment related to calibration
- more on capturing reality …
- Looking for tutor for GDV II!