Direct Resampling for Isotropic Surface Remeshing

Simon Fuhrmann, Jens Ackermann, Thomas Kalbe and Michael Goesele

Technische Universität Darmstadt
Interactive Graphics Systems Group
Introduction

- High-quality remeshing
 - For a given input mesh, compute a new mesh, change props
 - Strive for equilateral triangles, isotropic vertex distribution

Original mesh, ~35k vertices

Remeshing

Remesh, 5k vertices
Introduction

- Relaxation-based remeshing
 - Centroidal Voronoi tessellation (CVT) for isotopic remeshing
 - Lloyd relaxation to compute the CVT
 - Other relaxation schemes applicable
Lloyd relaxation

Lloyd's algorithm

- Build Voronoi diagram
- Move samples to cell centroid
- Repeat until convergence

Lloyd relaxation on random samples
Lloyd relaxation

Lloyd's algorithm

- Build Voronoi diagram
- Move samples to cell centroid
- Repeat until convergence

Lloyd relaxation on random samples
Lloyd relaxation

Lloyd's algorithm

- Build Voronoi diagram
- Move samples to cell centroid
- Repeat until convergence

Lloyd relaxation on random samples
Lloyd relaxation

Lloyd's algorithm

- Build Voronoi diagram
- Move samples to cell centroid
- Repeat until convergence

Lloyd relaxation on random samples

Animation missing!
Motivation

- Lloyd relaxation yields **uniform distribution**
- Relaxation requires good initialization
 - **Local** randomness quickly removed
 - **Global** mismatch between initial and desired distribution leads to slow convergence

Goal: Provide good initial vertex distribution

Animation missing!
Contribution

• Practical method for isotropic remeshing
 • Exact vertex budget as user parameter
 • Final vertex distribution controlled by density field
 • Preservation of tagged feature edges

• Main contributions
 • Fast direct resampling according to density field
 • Robust meshing in 3D using mutual tessellation
 • Beneficial sample distribution leads to fast CVT computation
Related Work (1)

- **Isotropic Remeshing of Surfaces** [Alliez et al. '03]
 - Uses global parametrization
 - Sampling, Lloyd relaxation & meshing in 2D

[Diagram showing the process of isotropic remeshing: Original mesh → Global parametrization → Lifting to 3D → Remeshed model]
Related Work (2)

- **A Local Parametrization Approach** [Surazhsky et al. '03]
 - Vertex-split and edge-collapse to control complexity
 - Small, overlapping parametrizations
 - Possibly “wrong” global vertex distribution

- **Direct sampling on surfaces for HQ remeshing** [Fu et al. '09]
 - Poisson-disc sampling for initial vertex distribution
 - Requires geodesics (slow)
 - Little control over the result (no vertex budget)
Algorithm Overview

- **Preprocessing**
 - Curvature estimation
 - Feature extraction

- **Resampling**
 - Surface/feature resampling
 - Mutual tessellation
 - Vertex decimation
 - Cleans original vertices

- **Mesh Improvement**
 - Lloyd relaxation to build WCVT
Algorithm Overview

- **Preprocessing**
 - Curvature estimation
 - Feature extraction

- **Resampling**
 - Surface/feature resampling
 - Mutual tessellation
 - Vertex decimation
 - Cleans original vertices

- **Mesh Improvement**
 - Lloyd relaxation to build WCVT
Algorithm Overview

- **Preprocessing**
 - Curvature estimation
 - Feature extraction

- **Resampling**
 - Surface/feature resampling
 - Mutual tessellation
 - Vertex decimation
 - Cleans original vertices

- **Mesh Improvement**
 - Lloyd relaxation to build WCVT
Resampling algorithm

- Resampling with exact number of vertices (budget)
- Partition budget between surface and features
 - Integrate surface density (2D quantity)
 - Integrate feature density (1D quantity)
 - Formulas from [Alliez et al. '03] to get
 - number of surface samples
 - number of feature samples
- Resample smooth surface (random placement)
- Resample feature skeleton (exact placement)
Surface resampling (1)

- Given: Number of samples for whole surface

- For each triangle T
 - Calculate optimal number of samples for T
 - Round to nearest integer, sample T
 - Pass error to next triangle
 - Similar to dithering, but no error diffusion (saves memory)

- Problem: Error is teleported to arbitrary locations!
Surface resampling (2)

- Re-order triangles for spatial locality [Sander et al. '07]
Feature resampling (1)

- Build skeleton by chaining feature edges
Feature resampling (2)

- For each backbone \(B \)
 - Compute optimal number of samples for \(B \)
 - Round number to nearest integer
 \(\rightarrow \) pass error to next backbone
 - Deduce optimal “density spacing” \(S \)
 - Place a sample every \(S \) density

![Diagram showing feature resampling process](attachment:image.png)
Decimation and Relaxation

- Samples are inserted into the original mesh (mutual tessellation) [Turk '92]
- Old vertices are deleted afterwards [Schroeder et al. '92]
- Lloyd relaxation using local parametrization framework [Surazhsky et al. '03]
Results – Horse model

Original model, ~50k vertices
Remeshed model, 6k vertices

7 secs with 100 Lloyd iterations
Results – Hygieia

Original mesh, ~8k vertices After resampling Remesh, 10k vertices

3.5 secs
Results – Comparison

* Our results use CPU parallelization

<table>
<thead>
<tr>
<th></th>
<th>Our work*</th>
<th>Surazhsky et al. '03</th>
<th>Fu et al. '09</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 sec</td>
<td>28 sec</td>
<td>103 sec</td>
<td></td>
</tr>
<tr>
<td>3.5 sec</td>
<td>17 sec</td>
<td>113 sec</td>
<td></td>
</tr>
</tbody>
</table>

* Our results use CPU parallelization
Results – Beethoven

Original model, ~1.5M vertices

Remeshed model, 500k vertices

5 mins with 100 Lloyd iterations
Limitations & Future Work

- Vertex relocation most fragile operation [Surazhsky et al. 03]
 - Involves (local) parametrization
 - Distortion in the patches is problematic
- **Future Work:** Relaxation without parametrization

Degenerated faces
~3k vertices

Mesh Slicing
[Botsch & Kobbelt ’01]

Remeshed Model
5k vertices
Conclusion

- We presented a remeshing approach that is
 - fast and efficient
 beneficial initial vertex distribution
 CPU parallelization in relaxation framework
 - simple and robust
 straight-forward implementation
 well-known, robust techniques (mutual tessellation, ...)
 - general and accurate
 2-manifolds with arbitrary genus
 relocation on reference surface
Thanks for your attendance!

Source code is available at http://tinyurl.com/remesher
Thanks for your attendance!

Source code is available at
http://tinyurl.com/remesher